Muriel Wheldale Onslow studied flowers in England with genetic and biochemical techniques in the early twentieth century. Working with geneticist William Bateson, Onslow used Mendelian principles and biochemical analysis together to understand the inheritance of flower colors at the beginning of the twentieth century. Onslow's study of snapdragons, or Antirrhinum majus, resulted in her description of epistasis, a phenomenon in which the phenotypic effect of one gene is influenced by one or more other genes. She discovered several biochemicals related to color formation. Onslow's methodology also partly contributed to the establishment of the field of chemical genetics.

A genome-wide association study, or GWAS, is a method for identifying variations in DNA that may contribute to the development of a particular trait, such as a disease. A GWAS relies on identifying statistical correlations between many, often thousands of, DNA markers and a particular trait. Scientists employ GWASs to try to identify the genetic contributions to complex traits, such as common human diseases. Complex traits are ones that scientists suspect are the result of multiple genes and environmental inputs acting together, in contrast to simple, Mendelian disorders that result primarily from the disturbance of a single gene. The genetic variants identified through a GWAS typically account for only a small proportion of the expected genetic contribution to a complex trait, which scientists refer to as the missing heritability problem. Since 2006, scientists have conducted thousands of GWASs aimed at identifying the genetic contributions to complex traits and have identified many thousands of genetic variations that correlate with those traits, although as of 2025, because of the missing heritability problem and other limitations, the concrete contributions of GWASs to medicine have so far been modest.